Recursion in Modelica
Our example demonstrates recursive functions in Modelica. Here’s a classic factorial implementation:
function factorial
input Integer n;
output Integer result;
algorithm
if n == 0 then
result := 1;
else
result := n * factorial(n - 1);
end if;
end factorial;
model RecursionExample
Integer fact7;
equation
fact7 = factorial(7);
when terminal() then
Modelica.Utilities.Streams.print("Factorial of 7: " + String(fact7));
end when;
end RecursionExample;
This factorial
function calls itself until it reaches the base case of factorial(0)
.
In the RecursionExample
model, we calculate the factorial of 7 and print the result.
Modelica doesn’t have a direct equivalent to closures or anonymous functions. However, we can achieve similar functionality using function pointers. Here’s an example of a recursive Fibonacci function using a function pointer:
function fibonacciImpl
input Integer n;
input FibonacciFunc fibFunc;
output Integer result;
algorithm
if n < 2 then
result := n;
else
result := fibFunc(n-1, fibFunc) + fibFunc(n-2, fibFunc);
end if;
end fibonacciImpl;
function fibonacci
input Integer n;
output Integer result;
algorithm
result := fibonacciImpl(n, fibonacciImpl);
end fibonacci;
model RecursionExample
Integer fib7;
equation
fib7 = fibonacci(7);
when terminal() then
Modelica.Utilities.Streams.print("Fibonacci of 7: " + String(fib7));
end when;
end RecursionExample;
In this example, we define a fibonacciImpl
function that takes a function pointer fibFunc
as an argument. The fibonacci
function then calls fibonacciImpl
with itself as the function pointer, allowing for recursion.
To run these examples, you would typically use a Modelica simulation environment. The results would be printed at the end of the simulation:
Factorial of 7: 5040
Fibonacci of 7: 13
Note that Modelica is primarily used for physical system modeling and simulation, so these examples are somewhat atypical. In practice, recursive algorithms in Modelica are less common than in general-purpose programming languages.